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Abstract—Recently, cross-scene hyperspectral image classifica-
tion (HSIC) has attracted increasing attention, alleviating the
dilemma of no labeled samples in the target domain. Although
collaborative source and target training has dominated this field,
training effective feature extractors and overcoming intractable
domain gaps remains challenging. To cope with this issue, we
propose a multi-level unsupervised domain adaptation (MLUDA)
framework, which comprises image-, feature-, and logic-level
alignment between domains to fully investigate the comprehensive
spectral-spatial information. Specifically, at the image level,
we propose an innovative domain adaptation method named
GuidedPGC based on classic image matching techniques and the
guided filter. The adaptation results are physically explainable
with intuitive visual observations. Regarding the feature level,
we design a multi-branch cross attention structure (MBCA)
specifically for HSIC, which enhances the interaction between the
features from the source and target domains through dot-product
attention. Finally, at the logic level, we adopt a supervised con-
trastive learning (SCL) approach that incorporates a pseudo-label
strategy and local maximum mean discrepancy loss, increasing
inter-class distance across diverse domains and further improving
the classification performance. Experimental results on three
benchmark cross-scene datasets demonstrate that our proposed
method consistently outperforms the compared approaches. The
source code is available at https://github.com/cfcys/MLUDA.

Index Terms—Cross-scene, domain adaptation, guided filter,
cross attention, supervised contrastive learning
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W ITH the rapid development of sensor and image pro-
cessing technologies, hyperspectral image (HSI) has

attracted extensive attention due to its abundant land cover
spatial distribution information and detailed spectral reflection
data [1]–[3]. HSI classification (HSIC) is currently a hot re-
search topic with the objective of assigning specific land cover
categories to each pixel [4]–[8]. Additionally, HSIC holds
considerable practical significance and has been extensively
used in various fields, including urban monitoring, ecological
science, and deep space exploration [9], [10].

In the last two decades, significant progress has been
achieved in HSIC tasks, profiting from the advancements
in deep learning (DL) and increased computational power
[11]–[14]. Compared to the traditional methods, the DL-based
approaches utilize deep neural networks to extract more so-
phisticated features from the raw data. Chen et al. [15] [16] are
pioneers in integrating HSIC with stacked autoencoders (SAE)
and deep belief networks (DBN), demonstrating the suitability
of DL frameworks. Subsequently, numerous scholars have
developed methods specifically for HSIC based on various
architectures, such as the recurrent neural networks (RNN)
[17], the classical convolutional neural networks (CNN) [18],
2-D CNN [19], 3-D CNN [20], a hybrid spectrum CNN
incorporating both 3-D CNN and 2-D CNN [21], and the
generative adversarial networks (GAN) [22], which yielded
significant results.

Nowadays, the vision Transformer (ViT) based on self
attention mechanism has demonstrated promising performance
in computer vision. Numerous studies indicate that ViT can
effectively capture global semantic information in the HSI.
For instance, Hong et al. [23] introduced a backbone network
called SpectralFormer, which is built upon the foundational
ViT structure and reconsiders the HSIC from a sequential
perspective. To fully exploit the spectral-spatial information,
Farooque et al. [24] proposed a multi-scale three-dimensional
atrous convolution approach based on the swin transformer
(SwinT), which involves parallel branches to fuse spectral-
spatial features in various scales, and then linearly embeds
them into the lightweight SwinT. Huang et al. [25] integrated
3-D SwinT with contrastive learning to accommodate the 3-
D properties of HSI, proving the effectiveness of ViT and
contrastive learning in HSIC. Additionally, Peng et al. [26]
introduced cross attention mechanism that investigates the mu-
tual information between spectral and spatial aspects, leading
to superior results than the conventional ViT structure.

https://github.com/cfcys/MLUDA
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In practice, due to the increasingly obtained HSIs and the
dilemma in acquiring annotated samples, it is pretty hard to
predict class labels of new HSI scenes [27]. The direct transfer
of classification models trained on the source domain (SD) to
the target domain (TD) is full of difficulties. The problem
arises from the distinct changes in the conditional distribution
and spectral features of the same object in different scenarios,
creating a significant domain gap between SD and TD and
sharply reducing the classification performance. Therefore,
overcoming this obstacle and achieving better cross-scene
HSIC without annotated samples in TD has high practical
significance, which is identified as the unsupervised domain
adaptation (UDA) problem [28].

Existing UDA methods are generally categorized into
three major classes, i.e., instance-based, classifier-based, and
feature-based. Among them, the instance-based methods in-
volve reweighting samples or extracting crucial instances to
mitigate the domain shift. The classifier-based methods aim to
train a robust classifier that can generalize to the target domain
during the training process. The feature-based methods, which
are the most prevalent, aim to extract domain-invariant features
to minimize distribution differences between two domains,
[29]. Early seminal UDA methods, such as space alignment
[30] and correlation alignment [31], both focus on acquiring
features that exhibit effective domain invariance. However,
constrained by their inherent limitations, these methods can
only extract manually crafted shallow features.

Afterward, plenty of UDA methods based on DL have been
developed benefited from automatically extracting features,
showcasing advantages over the above traditional methods.
For instance, Long et al. [32] proposed a deep adaptation
network (DAN) that embeds representations into a common
space and reduces domain shift by minimizing the maximum
mean discrepancy (MMD) across multiple kernels. Using the
distinctive adversarial strategy [33], Ganin et al. [34] integrated
GAN into domain adaptation and proposed a domain adversar-
ial neural network (DANN), which extracts domain-invariant
features through an adversarial learning mechanism.

With the above progress, the collaborative source and target
training scheme to extract domain-invariant information has
been widely utilized in cross-scene HSIC. For instance, Zhu
et al. [35] proposed the deep subdomain adaptive network
(DSAN) inspired by the DAN, introducing a local MMD
(LMMD) to address the alignment between the same cate-
gory from different domains. Subsequently, numerous meth-
ods emerged to achieve domain alignment by optimizing
the variance of statistical distributions. For example, Liu et
al. [36] proposed a class-wise distribution adaptation (CDA)
network, combining class-wise adversarial adaptation with a
probability-prediction-based MMD for effective adaptation.
Zhang et al. [37] presented a discriminative co-alignment
(DCA) method, which addresses geometric and statistical
shifts by aligning subspaces and distributions. Then, Huang et
al. [38] proposed a two-branch attention adversarial network
(TAADA), where a dual-branch feature extraction network is
designed as a generator to extract attention-based domain-
invariant spectral-spatial features. In addition, Fang et al. [39]
utilized confident learning for domain adaptation (CLDA),

which employs high-confidence samples to enhance the dis-
criminative capability of the network and achieves impressive
classification performance.

Despite the significant success of the above methods, we
notice that the previous attention-based approaches mainly
focus on extracting and interacting within the spatial and
spectral information in the HSI, while overlooking the at-
tentive interaction between the source and target domains.
Most importantly, although massive efforts have focused on
reducing the gaps between the source and target domains, little
emphasis has been placed on accommodating the domain shift
in various levels of the networks. Thus, the improvements in
the classification performance are limited.

To address these issues, we propose a multi-level unsuper-
vised domain adaptation (MLUDA) method for cross-scene
HSIC, which considers the image level, feature level, and logic
level to accommodate the domain gaps. At the image level, we
utilize gamma correction and color histogram to transfer the
style of the principal components of source and target domains
and then transform the original HSI through a guide filter [40].
This module, abbreviated as GuidedPGC, produces visually
compelling results with physical implications. At the feature
level, we introduce cross attention mechanism into cross-scene
HSIC and propose a multi-branch cross attention (MBCA)
module, which allows sufficient interactions between features
of the source and target domains by the classical dot-product
attention. At the logic level, we adopt supervised contrastive
learning (SCL) in the source and target scenes with a pseudo-
label strategy conducted in the target domain. Besides, we
incorporate the LMMD loss function into the optimization,
enhancing the intra-class compactness in the aligned features
and consequently improving the classification accuracy.

In summary, the contributions of the study are as follows:

1) We propose the GuidedPGC by incorporating the guided
filter and classical style transfer techniques, achieving image-
level domain adaptation for the specific three-dimensional
HSI. This approach is characterized by its explainable physical
meaning, allowing visual verification of the effective domain
adaptation process.

2) We first introduce the cross attention mechanism into the
cross-scene HSIC and devise the MBCA module, which fa-
cilitates comprehensive interactions between source and target
domain information, fully using the rich high-level spectral-
spatial features in the HSI through a multi-head attention layer
structure.

3) We involve the SCL in the source and the target domains
with a pseudo-label strategy. And the LMMD is integrated
into the network to impose the inter-class features separable
and intra-class compact. Extensive experiments on three public
cross-scene HSIC datasets validate the superiority of the
proposed method.

The paper is divided into five sections. Section II provides
an overview of the related works. Section III details our
proposed method. Section IV presents our experimental results
and analysis. Section V summarizes this study.
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II. RELATED WORKS

A. Image-level Domain Adaptation

For HSI applications, the classification task exhibits certain
similarities with semantic segmentation for normal remote
sensing images [41], [42], which provides valuable enlight-
enment for our research. For example, Li et al. [43] drew
inspiration from the concept of white balance and proposed
an unsupervised color mapping unification module to nor-
malize the color space of source and target domain datasets.
It mitigates the covariate shifts caused by varying captur-
ing conditions for the very high-resolution (VHR) images
and achieves promising performance. Additionally, Ma et
al. [44] addressed the issue of image-level domain shift by
employing gamma correction on the luminance channel to
globally align the source domain images with reference images
from the target domain. This method has strong physical
significance and the effectiveness of the domain adaptation
can be visualized. Furthermore, Tasar et al. [45] proposed a
novel ColorMapGAN to generate synthetic training images to
achieve domain transfer. The model learns to transform the
color of the training data to match the test data by performing
only one element-wise matrix multiplication and one matrix
addition. The produced images are semantically identical to
the training images and they have similar spectral distributions
to the test images, demonstrating good visual fidelity. Based
on our investigation, the image-level style transfer is effective
for RS semantic segmentation tasks. However, holistic image-
level domain adaptation has not been widely developed for
cross-scene HSIC tasks.

B. Supervised Contrastive Learning

The contrastive learning gained prominence with the mile-
stone study of momentum contrast (MoCo) [46]. The InfoNCE
loss function introduced in MoCo brings positive samples
close to each other in the feature space while simultaneously
pushing them apart from negative samples. Subsequent ap-
proaches such as SimCLR [47] and MoCoV2 [48] further
harnessed the significant potential of contrastive learning.
Afterwards, SCL [49] is proposed by extending the con-
cepts of contrastive learning to fully supervised learning.
The framework first augments the data and projects them
into the embedding space, then selects samples of the same
category as positive samples and aligns them in the embedding
space, while increasing the distance between samples from
different classes. This way, the extracted features are more
discriminative than the general fully supervised learning.

In HSIC, Liu et al. [50] designed a deep contrastive learning
network (DCLN) to address the small-sample classification
problems by constructing contrastive groups that enable con-
trastive learning to train the network to extract highly domain-
invariant features. Guan et al. [51] considered the inherent
characteristics of HSI and proposed a spatial-spectral con-
trastive learning (SSCL) method, which extracts spectral and
spatial information to create a pair of samples representing
two perspectives in contrastive learning. Additionally, Ref.
[52] proposed a fine-grained prototype contrastive learning
network, which combines SCL and prototype learning to

mitigate the domain shift in few-shot learning and proves the
significant potential of the SCL in HSIC tasks.

III. PROPOSED MLUDA FOR HSIC

The flowchart of the proposed MLUDA for cross-scene
HSIC is depicted in Fig. 1. It can be observed that the frame-
work mainly consists of three levels of domain adaptation:
image level, feature level, and logic level. In the framework,
data from the source and target domains initially undergo
image-level domain adaptation to align the source domain
data guided by the target domain in overall features such
as color and brightness. Subsequently, we apply two types
of data augmentation to both the source and target domain
data. The augmented data and the preliminary data are then
input into the spectral-spatial dual-branch attention feature
extraction network. The obtained features undergo feature-
level domain adaptation based on cross attention, leading to
the extraction of domain-invariant features. Finally, at the logic
level, we adopt an SCL loss based on pseudo-labels and the
LMMD loss, which is done to widen the gap between the
source and target domains of different classes to enhance the
classification performance.

A. GuidedPGC for Image-level Domain Adaptation

GuidedPGC is our newly proposed method based on the
guided filter, where P represents principal component analysis
(PCA), G denotes gamma correction, and C stands for color
histogram correction. This approach aims to reduce the gap in
attributes such as color and brightness between the source and
target domains at the image level, and it is completed by the
following steps.

1) Guided filtering: Guided filter [40] is an edge-preserving
filter widely used in image processing tasks, such as denoising,
detail enhancement, and HDR imaging. The core concept
involves integrating a guidance image into the filtering process
to ensure the resulting filter retains clarity at the edges.
An essential feature of the guided filter is its computational
efficiency, which is not affected by the window size and
depends only on the pixel count of the image.

An important assumption of the guided filter is that the
output image denoted as out and the guidance image denoted
as Ref have a local linear relationship within the filtering
window wk, it can be modeled as

outi = akRefi + bk,∀i ∈ wk (1)

where ak and bk are the parameters need to be determined.
At the same time, within the window wk, out is obtained by
subtracting the noise n (the part that needs to be filtered out)
from the input image Ori.

outi = Orii − ni,∀i ∈ wk (2)

Suppose there is an edge in out, it can be preserved while
making the filtered result out similar to the input image
Ori, minimizing the information loss caused by filtering. The
obtained closed-form solution after imposing the constraint is:
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Fig. 1. The flowchart of the MLUDA, illustrating the domain adaptation strategies at the image-, feature-, and logic-level.

outi =
1

|ω|
∑
i∈ωk

(akRefi + bk) (3)

ak =

1
|ω|

∑
i∈ωk

Refi · Orik − µkŌrik
σ2
k + ϵ

(4)

bk = Ōrik − akµk (5)

where Ōrik = 1
|ω|

∑
i∈ωk

Orii. µk and σk represent the mean
and variance pixel values of the Ref within wk, respectively.

2) Brightness gamma correction: Brightness gamma cor-
rection is a common technique to conveniently adjust overall
brightness and contrast of an image. The fundamental principle
involves applying a nonlinear transformation to each pixel in
the image, typically represented as a power function expressed
as Iout = Iγin, where Iin and Iout denote the pixel intensity
of the input and output images, respectively. γ is a prede-
termined parameter, and when γ is smaller than 1, gamma
correction increases the brightness and contrast of the image,
making dark details more noticeable. Conversely, when γ is
greater than 1, gamma correction reduces the brightness and
contrast, emphasizing bright details. Due to variations in color
representation among different display and printing devices,
brightness gamma correction ensures consistent image display
across various devices. In our task, HSIs from the source and
target domains may have different brightness and contrast due
to acquisition time and equipment variations. Thus, gamma
correction is employed to align these fundamental properties.

3) Color histogram matching: The image histogram is a
statistical representation of the distribution of pixels within an
image. Histogram matching aligns the histogram of an image
or a specific region with another image to ensure that the tonal
features are consistent between the two images. Specifically,
the procedure involves the following steps: converting the
original and target image to the HSV color space, calculating
their histograms and normalizing them, and computing the cu-
mulative distribution functions for them. For each pixel in the
original image, the algorithm identifies the corresponding pixel
in the target image with the closest match, and then assigns its
color value to the original image pixel. The modified image
is then converted back to the RGB color space, ensuring the
color spaces between the two images are harmonized.

Guided filtering

Filtered source HSI 

PCAPCA

Original source HSI Original target HSI 

Ref

Ori

Gamma correction Color histogram matching

Fig. 2. Illustration of the proposed GuidedPGC.

4) Image-level domain adaptation: Fig. 2 illustrates the
proposed GuidedPGC for image-level adaptation. We utilize
up to np principal components obtained through PCA as the
reference for brightness gamma correction and color histogram
matching. Taking the Houston dataset as an example, the input
images of the source and target domains have the dimensions
of w×h×48. After performing PCA, the dimensions become
w×h×np. Subsequently, we employ the data from the target
domain as a reference to apply gamma correction and color
histogram matching to the source domain data, minimizing the
gaps in brightness and color between the source and target
domains. Finally, the transformed image is utilized as the
reference (Ref) in the guided filtering, while the original image
serves as the input (Ori). After applying guided filtering band-
by-band, the resulting out maintains the same dimensions as
the original data but exhibits a distribution of brightness and
color features more similar to the target domain.

B. MBCA for Feature-level Domain Adaptation

MBCA aims to address the domain shift by leveraging the
advantages of the cross attention and self attention mecha-
nisms. The features from the source and target domains are
effectively integrated through dot-product attention, enhancing
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Fig. 3. The schematic diagram of the MBCA module.

their complementary characteristics and facilitating the extrac-
tion of domain-invariant features.

Fig. 3 illustrates the proposed MBCA, where Ft2s and Fs2t

represent the cross-domain features extracted by using the
cross attention mechanism. In our experiments, Ft2s and Fs2t

are initialized with values equal to Fs and Ft, respectively.
Ft2s represents features derived from the source domain with
the target domain as the auxiliary information. Similarly, Fs2t

represents features derived from the target domain with the
source domain as auxiliary. Taking advantage from the multi-
head attention, cross tokens are split into 2n nonoverlapping
copies denoted as Fsi ∈ RZ×( D

2n ) and Fti ∈ RZ×( D
2n ), where

i = 1,2,...,n and D represents the dimension of the input data.
Each head of the MBCA module consists of three groups of
linear matrices WQi ,WKi and WVi ∈ R D

2n × D
2n . Fs and Ft

are the inputs to one head of the MBCA module because
each head is identical in actual operations. Here, we present
the computation of two sets of matrices {Qs,Ks,Vs} and
{Qt,Kt,Vt} for each attention head in the structure of dot-
product attention as follows:

Qs = FsWQ,Ks = FsWK,Vs = FsWV (6)

Qt = FtWQ,Kt = FtWK,Vt = FtWV (7)

We further derive two self-similarity matrices Ss and St, and
two cross-similarity matrices St2s and Ss2t after performing
the matrix calculations. Specifically, Ss and St retrieve infor-
mation for each element from their respective domain feature
maps. St2s uses the target query Qt to explore each element
Ks in the source domain, while Ss2t uses the source query
Qs to explore each element Kt in the target domain. The
self attention matrix {As,At} and the cross attention matrix
{As2t,At2s} can be calculated by utilizing the self-similarity
matrices and cross-similarity matrices as follows:

As = SsV
T
s = φ

(
QT

s Ks√
d

)
VT

s (8)

At = StV
T
t = φ

(
QT

t Kt√
d

)
VT

t (9)

As2t = Ss2tV
T
t = φ

(
QT

s Kt√
d

)
VT

t (10)

At2s = St2sV
T
s = φ

(
QT

t Ks√
d

)
VT

s (11)

where d is the channel size per head. φ() and ()T represent
the softmax function and the matrix transpose, respectively.

By utilizing the pairs {As2t,Fs2t} and {At2s,Ft2s}, the
MBCA can integrate information from different domains and
concurrently acquire more transferable features from one do-
main to another. The fused features are then input to a multi-
layer perceptron, which is a two-layer fully connected neural
network designed to recover perceptual information across all
channels. In the MBCA module, information from two differ-
ent domains is integrated by combining the information from
each point on both feature maps across all channel dimensions.
Furthermore, the entire MBCA incorporates normalization
layers and dropout layers after the attention modules. For
different datasets, the MBCA module can produce different
effects with multiple cascaded levels. Additionally, different
numbers of heads can also effect the classification results. We
will further discuss the parameter settings in the Section IV-E.

C. SCL for Logic-level Domain Adaptation

The SCL [53] is a prevalent approach in the field of self-
supervised learning, which aims to maximize the consistency
across different augmented views of samples from the same
class. This, in turn, reduces the distance between samples be-
longing to the same category, while simultaneously increasing
the separation between samples from different classes.

1) Data augmentation: Data augmentation is a critical
element in SCL. For each sample x in the source and target
domains, we conduct two data augmentations to generate re-
lated views of the same, x̃ = Aug(x). The data augmentation
techniques used in this study are random Gaussian noise and
random flipping.

• Random Gaussian noise: The method involves Gaussian
distribution random noise to the original data.

• Random flipping: The scheme horizontally or vertically
flips the samples to increase the diversity of the data.

2) SCL loss: We randomly select N sample pairs
{xs

k, y
s
k}k=1,...,N , then through two data augmentation

modules, we can obtain 2N samples pairs denoted as
{x̃s

i , ỹ
s
i }i=1,...,2N . The loss function for SCL can be formu-

lated as follows:

Lscl =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp

(
zs
i · zs

p/τ
)∑

a∈A(i) exp (z
s
i · zs

a/τ)
(12)

where i ∈ I = {1, . . . , 2N} represents the index of each aug-
mented sample, referred to as “anchor”. zs

i = Pro(E(x̃s
i )) ∈

RDP denotes the vector projected from the extracted features
and Dp is set to 128 in our experiments. A(i) = I \ {i}
represents the set of all data excluding the anchor itself.
P (i) =

{
p ∈ A(i) : ỹs

p = ỹs
i

}
represents the set of all

“positive” samples where the samples in the set share the same
label as the anchor. τ ∈ R+ is a temperature coefficient. In the
framework, the SCL is applied to both the source and target
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domains. For the target domain, we utilize the classifier from
the current iteration to generate pseudo-labels based on the
already obtained features.

D. Details of the Feature Extractor and Model Implementation

1) Feature extractor: In the proposed method, we adopt
the spectral-spatial dual-branch attention feature extraction
network proposed in TAADA [38] as the feature extractor,
which is illustrated in Fig. 4.

As shown in the right branch, the data undergo spectral
feature extraction by utilizing 24 convolutional kernels with
dimensions of 1× 1× 7. After traversing three convolutional
layers and a single residual operation, the data is transformed
into the Spectral squeeze-excite (SE) module. Compared to
the conventional SE model [54], Spectral SE considers the
significance of each frequency band and enhances various
bands. We define V = [v1,v2, . . . ,vC ] as the 2-D spatial
patches, the Spectral SE operation is formulated as

zk = Fsq(vk) =
1

H ×W

H∑
i=1

W∑
j=1

vk(i, j), k = 1, . . . , C

(13)
where vk ∈ RH×W and H = W = 7, C = 128, the operation
Fsq(·) is known as the squeeze operator.

The spatial feature extractor is shown in the left branch,
which consists of two convolutional layers, a residual block,
and a Spatial SE structure. This design enables the extractor
to compress spectral information and emphasize the spatial
features. In detail, 24 convolutional kernels with size 1×1×48
are initially employed to process the data, with an emphasis
on extracting spectral information. After passing through two
convolutional layers and undergoing a residual operation, the
information is input to the Spatial SE structure to capture
the inherent spatial information effectively. We define the 49
vectors as V = [v1,1,v1,2, . . . ,vi,j , . . . ,vW,H ] which has a
dimension of 1× 1× 24 and can be converted to 24 patches
with the size of 7 × 7, where vi,j ∈ R1×1×C , H = W = 7,
and C = 24. Finally, the Spatial SE operation is

q = Fex

(
Fsq(V)

)
= σ(W ⊗V) (14)

where q ∈ RW×H and W ∈ R1×1×C . Then, we concatenate
the features obtained from the two branches to obtain the final
extracted features.

2) Model implementation: By combining GuidedPGC,
MBCA, and SCL for domain adaptation, we achieve addi-
tional performance improvement by accommodating the do-
main gaps at multiple levels. A basic classifier is devised,
projecting features into the category dimensionality, followed
by a softmax operation to produce the final predicted category
with the highest probability. The normal cross-entropy loss is
employed in the optimization process. In addition, we adopt
the LMMD loss proposed in [35] to effectively align each
category between the source and target domains. In summary,
the overall loss function is as follows:

Loss = Lcls + Lscl + λLlmmd (15)

Conv,BN
ReLU

Sample
7x7x48

7x7x21,24

…

1x1x7,24

Conv,BN
ReLU1x1x7,24

…
7x7x21,24

Conv,BN
ReLU1x1x7,24

…
7x7x21,24

Conv,BN
ReLU1x1x21,128

7x7,128
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ReLU 3x3,24

7x7,24
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Fig. 4. The spectral-spatial dual-branch attention feature ex-
traction network.

where λ is a balancing parameter. We empirically set λ =
0.01 ∗ 2/(1+ e(−10∗(epoch)/epochs))− 1 which produces better
results than ordinary constant parameter [53].

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Datasets

To demonstrate the effectiveness of the proposed methods,
we conducted experiments on six HSI datasets: Houston2013,
Houston2018, Pavia University, Pavia Center, Shanghai, and
Hangzhou.

Houston2013 and Houston2018: The Houston2013 dataset
has spatial dimension of 349 × 1905, with a 2.5-meter
resolution, and comprises 144 spectral bands for analysis
across 15 categories. In contrast, the Houston2018 dataset has
dimensions of 209 × 955 pixels, with a 1-meter resolution,
and includes 48 spectral bands covering 20 categories. The
datasets are acquired in 2013 and 2018 utilizing disparate
sensors, encompassing the University of Houston campus and
its environs. This highlights the discernible gap between the
source and target domains due to temporal disparities and
variations in sensor characteristics. Fig. 5 presents false-color
images and ground truth maps for the datasets. Besides, both
datasets span a wavelength range from 0.38 to 1.05 µm.

Pavia University and Pavia Center: The Pavia University
contains 610 × 610 pixels, and initially includes 115 spectral
bands. After removing 12 noisy bands, the dataset consists of
103 spectral bands. Furthermore, the size is reduced to 610 ×
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TABLE I: NUMBER OF SAMPLES IN THE HOUSTON
DATASET

No. Class Houston13
(Source)

Houston18
(Target)

1 Grass healthy 345 1353
2 Grass stressed 365 4888
3 Trees 365 2766
4 Water 285 22
5 Residential buildings 319 5347
6 Non-residential buildings 408 32459
7 Road 443 6365

Total 2530 53200

Road

Trees

Non-residential buildings

Grass stressed Residential buildings

Concrete/Asphalt

Water

Background

Fig. 5. HOUSTON dataset visualization.

340 pixels due to the presence of invalid data in the datasets.
The Pavia Center dataset comprises 1096 × 1096 pixels and
102 spectral bands. Additionally, we adjust its size to 1906
× 715 pixels due to the presence of invalid data. The two
datasets are acquired using ROSIS sensors in Pavia, a city in
the northern region of Italy. Thus, the two datasets effectively
demonstrate the gap between distinct locations within the
same urban area. Besides, the last spectral band of the Pavia
University dataset is removed for consistency. Fig. 6 shows the
false-color images and ground truth maps for both datasets.

Shanghai and Hangzhou: The SH2HZ dataset accurately
captures the gap that exists between remotely sensed images
of different urban laneways taken by the same sensor. The
datasets are collected using the EO-1 Hyperion hyperspec-
tral sensor. The Shanghai dataset consists of 1600 × 230
pixels, while the Hangzhou dataset comprises 590 × 230
pixels. Both datasets contain three common categories: water,
land/buildings, and plants. After removing the defective bands,
we obtain a total of 198 spectral channels. Fig. 7 shows false-
color images and ground truth maps for both datasets.

Taking the six HSI datasets, we design three UDA tasks,
each approaching the gap between the source and target
domains from the perspectives of distinct collection dates,
scenes, and cities, which are delineated as follows:

1) Houston Task: The source and target domain are repre-
sented by the Houston2013 and Houston2018 datasets, respec-
tively. To achieve this, seven shared categories are considered
in the datasets, which is detailed in Table I. The primary
challenge of this task lies in the considerable temporal gap
and the utilization of disparate sensors during data collection
between the source and target domains.

2) Pavia Task: The Pavia University dataset defines the
source domain, while the Pavia Center dataset represents
the target domain. We consider seven shared categories as
illustrated in Table II. This task effectively illustrates how our

TABLE II: NUMBER OF SAMPLES IN THE PAVIA
DATASET

No. Class PaviaU
(Source)

PaviaC
(Target)

1 Tree 3064 7598
2 Asphalt 6631 9248
3 Brick 3682 2685
4 Bitumen 1330 7287
5 Shadow 947 2863
6 Meadows 18649 3090
7 Bare soil 5029 6584

Total 39332 39355

Bare soil

Brick

Meadows

Asphalt

Shadow

Tree Bitumen

Background

Fig. 6. PAVIA dataset visualization.

TABLE III: NUMBER OF SAMPLES IN THE SH2HZ
DATASET

No. Class ShangHai
(Source)

HangZhou
(Target)

1 Water 123123 18043
2 Land/Building 161689 77450
3 Plant 83188 40307

Total 368000 135700

PlantLand/BuildingWater

Fig. 7. SH2HZ dataset visualization.

model addresses the HSIC task across diverse scenes within
the same city.

3) SH2HZ Task: The source domain is the Shanghai
dataset, while the target domain involves the Hangzhou
dataset. This task focuses on three common categories in
the datasets as listed in Table III. The primary challenge of
this task is to address the gap between the source and target
domains caused by similar scenes across different cities.
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B. Experimental Setup

To evaluate the proposed approach, we conduct comparisons
with seven other domain adaptation methods, including DAN
[32], DANN [34], DSAN [35], CDA [36] TAADA [38], and
the recent state-of-the-art CLDA [39] method. All experiments
are conducted ten times to mitigate the impact of random
sampling, and the average value is utilized as the final clas-
sification result. Given the current distribution shift between
the source and target domains, we conduct the necessary
normalization on the input data. For the experiments, we select
180 samples for each class in the source domain and use all
of the target samples for training.

In DAN, we incorporate three adaptive layers, each utilizing
multiple kernel variants of the MMD metric. The number of
Gaussian kernels is fixed to five. In addition, we set the epoch
to 200 and the batch size to 32 for training. To maximize
its effectiveness, we use a specific configuration for the Pavia
dataset with a batch size of 64 and 300 epochs. For DSAN, the
spectral-spatial dual-branch attention convolutional network
mentioned earlier is utilized as the feature extractor. In each
task, we incorporate five transfer layers and set the weighted
parameter of the LMMD loss function to 0.1. Additionally,
we adopt the optimal parameters as identified in their original
papers for the methods DANN, CDA, TAADA, and CLDA,
which are mainly designed for HSIC.

For our proposed method, we set the number of epochs to
100 for the three tasks. The initial learning rate η0 is set to
0.01, 0.001, and 0.0003 for three tasks during training. For the
Houston task, the learning rate is adjusted dynamically using
the formula ηθ = η0/(1 + aθ)b, where a = 10, b = 0.75, and
θ is a variable that changes linearly from 0 to 1 in the training
process. The patch size is set to 7 × 7, 11 × 11, and 1 × 1
for the three tasks. The number of the principal components
is experimentally set to 2, the number of the head in the cross
attention is set to 2, and τ is set to 0.1. Additionally, we utilize
stochastic gradient descent as the optimizer and the batch size
is set to 32, 64, and 32 for three tasks.

C. Experiments and Results Analysis

We utilize overall accuracy (OA), average accuracy (AA),
and the Kappa coefficient (Kappa) to evaluate the classification
performance of different methods. From Table IV to Table VI,
we present the experimental results with the best outcomes in
bold. For visual comparison, we present the best classification
maps of various methods from Fig. 8 to Fig. 10. The ground
truth is also shown for convenient comparison.

1) Experiments on Houston task: Table IV displays the
experimental results of various comparative algorithms on
the Houston dataset. The CDA, TAADA, and CLDA built
specially for HSI analysis demonstrate superior performance
compared to DAN and DSAN. The CLDA and TAADA
perform relatively well, but their metrics exhibit higher vari-
ability across multiple independent experiments. The DANN
is designed explicitly for cross-scene HSIC, but as an early
attempt that only focuses on aligning feature distributions, its
performance lags behind other methods except for the DAN.
The proposed method, which conducts domain adaptation

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 8. Classification maps obtained via various algorithms for
HOUSTON DATASET. (a) Ground truth, (b) DAN, (c) DANN,
(d) DSAN, (e) CDA, (f) TAADA, (g) CLDA, (h) MLUDA.

at multiple levels, is superior to other comparisons, demon-
strating stable classification performance. For example, the
MLUDA achieves an impressive peak accuracy of 76.64% in
OA, surpassing the second-ranked CDA by a notable improve-
ment exceeding 3%. Concerning AA and Kappa, MLUDA
significantly outperforms the alternative methods.

In the visual classification results, the challenge lies in dis-
tinguishing the “Non-residual building” and “Residual build-
ing” classes. The accuracy improvement is primarily associ-
ated with this category. Methods such as DAN, DANN, and
DSAN, which lack specialized designs for hyperspectral data,
struggle to differentiate these categories and perform poorly
in the “Grass stressed” class. Due to the limited number
of samples, we attribute these challenges to the failure of
these methods to extract representative hyperspectral features
from the source domain. In contrast, our method excels at
classifying these complex categories in Houston.

Let’s recall Fig. 2, which shows the visual domain adapta-
tion process of the Houston dataset in the GuidedPGC module.
It can be observed that the Houston18 image has a strong
color contrast and brightness compared to Houston13. There
are discernible gaps between the source and target domain due
to temporal disparities and variations in sensor characteristics.
After the GuidedPGC module, significant improvements can
be found in the color contrast and brightness of the Houston13
image. This enhancement in GuidedPGC reduces the apparent
gap between the source and target domain, thereby elucidating
the gains in classification accuracy.

2) Experiments on Pavia task: Table V displays the exper-
imental results on the Pavia dataset. It can be seen that all
methods achieve relatively excellent performance in domain
adaptation classification, which may be attributed to the abun-
dant sample quantity and balanced sample distribution in this
dataset. The DAN and DANN exhibit lower performance. This
may be due to the fact that DAN only uses MMD loss, and
DANN relies solely on basic domain obfuscation techniques.
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TABLE IV: CLASSIFICATION PERFORMANCE (%) OF VARIOUS METHODS ON THE HOUSTON DATASET

No. Class DAN [32] DANN [34] DSAN [35] CDA [36] TAADA [38] CLDA [39] MLUDA
1 Grass healthy 78.74 74.52 93.71 93.21 83.79 73.73 83.26
2 Grass stressed 76.23 77.31 46.55 53.17 51.10 92.43 75.69
3 Trees 70.37 69.32 59.67 64.28 61.32 70.68 54.13
4 Water 92.43 93.99 59.09 90.21 91.76 70.91 94.55
5 Residential buildings 83.31 77.62 76.61 74.31 71.22 82.64 84.28
6 Non-residential buildings 45.32 56.31 72.07 83.21 72.15 54.74 79.33
7 Road 59.65 75.12 56.23 31.34 73.98 80.83 65.74

OA - 55.43 60.37 68.19 72.95 72.88 69.63 76.64
±1.54 ±1.86 ±2.46 ±1.41 ±3.16 ±2.82 ±1.18

AA - 71.32 71.38 66.28 70.21 73.21 71.99 76.71
±1.94 ±2.31 ±6.59 ±1.67 ±2.64 ±2.76 ±1.99

Kappa - 45.33 46.31 52.31 54.21 60.33 56.84 63.62
±2.24 ±2.21 ±3.33 ±2.01 ±2.41 ±3.59 ±1.47

TABLE V: CLASSIFICATION PERFORMANCE (%) OF VARIOUS METHODS ON THE PAVIA DATASET

No. Class DAN [32] DANN [34] DSAN [35] CDA [36] TAADA [38] CLDA [39] MLUDA
1 Tree 72.63 75.03 82.42 92.13 92.13 95.51 93.02
2 Asphalt 77.39 82.63 85.61 77.21 91.11 98.31 96.36
3 Brick 82.65 77.11 88.89 84.97 76.31 74.14 96.81
4 Bitumen 67.22 72.91 72.54 82.39 78.53 81.66 85.42
5 Shadow 98.15 95.32 88.77 99.26 87.15 91.24 99.91
6 Meadows 73.01 87.11 86.5 63.19 86.64 85.32 97.45
7 Bare soil 75.16 72.57 78.57 73.94 86.78 90.19 79.97

OA - 76.43 79.14 81.92 84.56 89.17 91.02 91.26
±1.46 ±3.23 ±2.75 ±2.08 ±1.94 ±2.10 ±0.53

AA - 78.18 80.33 83.33 83.15 88.21 90.02 92.70
±1.34 ±2.32 ±2.02 ±1.31 ±1.23 ±1.78 ±0.80

Kappa - 71.23 72.35 78.37 80.38 87.88 89.23 89.63
±1.71 ±3.19 ±2.14 ±2.33 ±2.01 ±2.21 ±0.63

TABLE VI: CLASSIFICATION PERFORMANCE (%) OF VARIOUS METHODS ON THE SH2HZ DATASET

No. Class DAN [32] DANN [34] DSAN [35] CDA [36] TAADA [38] CLDA [39] MLUDA
1 Water 99.81 88.37 99.47 98.91 93.23 95.88 99.94
2 Land/building 77.21 86.31 73.66 81.23 84.83 89.12 89.90
3 Plant 87.12 81.24 87.12 88.17 95.13 87.23 93.05

OA - 83.12 85.31 81.08 87.92 82.09 89.68 92.15
±2.12 ±3.12 ±3.88 ±1.10 ±1.77 ±0.98 ±0.94

AA - 87.91 84.19 86.75 91.36 84.91 90.32 94.30
±1.31 ±2.89 ±2.42 ±1.77 ±0.92 ±1.49 ±0.63

Kappa - 73.14 72.89 69.58 79.31 67.37 82.16 92.15
±2.91 ±3.42 ±5.58 ±1.72 ±2.41 ±2.20 ±1.49

In contrast, DSAN employs an additional LMMD loss, while
CDA is equipped with multiple discriminators, and both of
them achieve improvements. TAADA employs adversarial
domain adaptation with two classifiers which exhibit strong
capabilities in extracting domain-invariant features and gain
improvements. Besides, CLDA with the confident learning
strategy performs relatively better.

Notably, our approach achieves higher metrics compared to
other methods, with an OA of 91.26%, an AA of 92.70%, and
a Kappa of 89.63%. Nevertheless, considering that TAADA
and CLDA effectively address the gaps of various scenarios,
the enhancements achieved by our method are limited. How-
ever, our approach shows smaller deviations across multiple
experiments, highlighting the robustness of the model.

In the visual classification results, we can observe that the
DAN, DANN, and DSAN algorithms incorrectly predicted the
“Meadows” as the “Tree”, instead of the adjacent “Bare soil”.
In the CDA, TAADA, and CLDA, the categories “Bitumen”,
“Shadow” and “Meadows” show significant differences. This

variation may be attributed to the insufficient domain adap-
tation capability of these methods. Our approach achieves
the highest classification accuracy for these three categories,
which is consistent with the results presented in Table V.

3) Experiments on SH2HZ task: Table VI displays the ex-
perimental results on the SH2HZ dataset. Unlike the previous
two datasets, DSAN and TAADA did not outperform DAN
and DANN. Meanwhile, the adversarially structured CDA
and CLDA exhibit relatively stable performance in this task,
achieving commendable metrics across the three indicators.
Similar to the other two tasks, our method achieves higher
OA, AA, and Kappa with better stability. Therefore, we can
conclude that our multi-level structure can handle the task of
UDA in various complex situations.

In the visual classification results, the challenge lies in
distinguishing the dispersed “Water” within the ”Land” due
to the fewer categories. Methods such as CDA, CLDA, and
TAADA misclassify numerous instances of “Land” as “Water”.
On the other hand, general methods such as DAN often
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. Classification maps obtained via various algorithms for
PAVIA DATASET. (a) Ground truth, (b) DAN, (c) DANN, (d)
DSAN, (e) CDA, (f) TAADA, (g) CLDA, (h) MLUDA.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 10. Classification maps obtained via various algorithms
for SH2HZ DATASET. (a) Ground truth, (b) DAN, (c) DANN,
(d) DSAN, (e) CDA, (f) TAADA, (g) CLDA, (h) MLUDA.

misclassify many instances of “Plant” as “Water”. In contrast,
MLUDA performs best by using multi-level domain adaptation
to reduce the misclassifications in the mentioned scenarios.

D. Ablation Experiments

To further illustrate the effectiveness of each level in our
proposed multi-level framework, referred to as image-level

domain adaptation (A), feature-level domain adaptation (B),
and logic-level domain adaptation (C), we conduct ablation
experiments. The complete structure is denoted as ABC, where
AB represents the structure without the C module, i.e., the
logic-level domain adaptation is removed. Similarly for AC
and BC. The ablation results for various datasets are presented
in Tables VIII, VII, and IX. The ablation experiments clearly
indicate that removing any portions from the multi-level struc-
ture (ABC) results in a decrease in OA, AA, Kappa, and even
the stability of the model. This supports the reasonableness
and effectiveness of each level within the proposed structure.

TABLE VII: ABLATION EXPERIMENTS ON HOUSTON
DATESET

Class AB AC BC ABC
1 66.85 81.03 74.52 83.26
2 69.83 70.14 75.17 75.69
3 52.08 61.87 57.15 54.13
4 83.64 82.73 95.00 94.55
5 85.94 86.08 84.99 84.28
6 79.99 70.57 80.09 79.33
7 44.39 71.29 61.06 65.74

OA 73.59 71.99 76.18 76.64
±2.08 ±3.25 ±0.88 ±1.18

AA 68.96 74.82 75.85 76.71
±5.08 ±3.64 ±1.96 ±1.99

Kappa 57.69 58.68 63.13 63.62
±3.87 ±3.52 ±1.45 ±1.47

E. Parameter and Sensitivity Analysis

We conduct a sensitivity analysis on critical parameters
at various levels within the proposed framework, including
the patch size of the input data, the filtering radius in the
GuidedPGC module, the number of heads in the cross attention
of MBCA, and the temperature parameter (τ ) in the SCL. In
the following, we adjust these parameters individually while
keeping other parameters at their optimal values to observe
their influence on OA.

We test seven different patch sizes as 1×1, 3×3, 5×5,
7×7, 9×9, 11×11, and 13×13. The variation in classification
accuracy is illustrated in Fig. 11(a). For the Pavia task, the OA
gradually increased with growing patch size, reaching its peak
at the size of 11 × 11. In the Houston task, the OA initially
increases with increasing patch size, reaching its maximum
at 7×7, and then decreases. For the SH2HZ task, increasing
the patch size results in a decrease in classification accuracy.
Thus, for the SH2HZ task, the patch size is set to 1×1.

Regarding GuidedPGC for the image-level domain adapta-
tion, we test six different filtering radius parameters including
1.0, 0.1, 0.01, 0.001, 0.0001, and 0.00001. As depicted in Fig.
11(b), for the Pavia and SH2HZ, the best performance occurs
when the radius equals 0.0001, and the highest performance is
achieved at 0.01 for the Houston. Furthermore, the influence
of the radius on the Houston dataset is more pronounced than
on the Pavia and SH2HZ datasets, possibly because of the
relatively sparse nature of its source domain.

In the proposed MBCA, multiple heads can calculate diverse
attention to enhance the feature representation. We test six
different numbers of cross attention heads as 1, 2, 4, 8, 16,
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Fig. 11. Sensitivity analysis of parameters. (a) Patchsize, (b) Radius, (c) Numbers of cross attention heads, (d) τ .

TABLE VIII: ABLATION EXPERIMENTS ON PAVIA
DATESET

Class AB AC BC ABC
1 93.99 90.92 92.28 93.02
2 90.66 95.97 96.22 96.36
3 99.95 99.37 97.43 96.81
4 84.48 83.36 85.29 85.42
5 99.76 99.62 99.94 99.91
6 96.53 97.54 97.87 97.45
7 70.97 77.18 78.08 79.97

OA 88.56 90.13 90.82 91.26
±1.23 ±0.85 ±0.63 ±0.53

AA 90.9 91.99 92.44 92.70
±0.92 ±0.64 ±0.74 ±0.80

Kappa 86.45 88.24 89.12 89.63
±1.45 ±1.00 ±0.75 ±0.63

and 32. Fig. 11(c) illustrates the change in OA as the number
of heads increases. All three datasets show optimal accuracy
when the number of heads is set to 2. The overall effect of the
number of heads on performance is relatively small, indicating
low sensitivity to this parameter.

The temperature coefficient, denoted as τ , is a critical
parameter in the SCL module. We test five different temper-
ature coefficients including 1, 0.1, 0.01, 0.001, and 0.0001.
As shown in Fig. 11(d), our experiments reveal that all
three tasks performed best when the value of τ is set to

TABLE IX: ABLATION EXPERIMENTS ON SH2HZ DATE-
SET

Class AB AC BC ABC
1 99.69 99.68 99.97 99.94
2 88.26 85.72 89.12 89.90
3 89.83 91.78 93.85 93.05

OA 90.23 89.37 91.95 92.15
±1.07 ±2.58 ±1.06 ±0.94

AA 92.59 92.39 94.11 94.46
±0.82 ±1.94 ±0.79 ±0.63

Kappa 83.37 82.19 86.35 86.65
±1.68 ±4.17 ±1.71 ±1.49

0.1. As the value of τ decreases, the performance for each
task consistently declines, indicating the importance of the
temperature coefficient.

F. Analysis of the Computational Complexity

In this section, we analyze the computational complexity
of the proposed MLUDA. Specifically, we compare the train-
ing efficiency of MLUDA with related cross-domain HSIC
methods, e.g., CLDA, CDA, and TAADA. All methods are
performed using the NVIDIA GeForce GTX 4090 GPU and
the Intel Xeon Silver 4210R CPU. And the experiments utilize
the open-source deep learning framework PyTorch, Version
2.11. Table X shows the training time of different algorithms
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TABLE X: EXECUTION TIME (IN SECONDS) OF ONE EPOCH TRAINING OF DIFFERENT METHODS

Datasets DAN DANN DSAN CDA TAADA CLDA MLUDA
HOUSTON 18.91 9.11 14.15 14.37 14.23 13.19 16.66

PAVIA 28.13 6.43 21.21 22.23 21.01 19.46 23.98
SH2HZ 17.35 9.48 12.14 15.14 12.31 9.33 13.44

for one epoch with identical parameter settings. It can be
observed that the proposed MLUDA incurs a relatively longer
training time compared to other algorithms. As an early UDA
method, DANN has a much shorter training time than DAN
due to the adversarial structure, while DAN has the longest
training time.

V. CONCLUSION

In this paper, we propose a new MLUDA framework for
cross-scene HSIC. First, we design a GuidedPGC module
based on classic image matching techniques and guided filter
to achieve image-level domain adaptation, which enhances
the classification accuracy and improves the robustness of
the model. Second, at the feature level, we introduce a cross
attention structure called MBCA for HSIC, enhancing the
interaction of features between the source and target domain.
Third, at the logic level, we implement the SCL strategy
based on pseudo-labels and LMMD loss to further increase
the inter-domain class distance, thereby making the domain
adaptation of previous levels more achievable. The proposed
MLUDA features a clear and effective multi-level structure to
reduce the gap between the source and target domains, and the
experiments show its superiority over other related methods.
In the future, we will consider migrating the multi-level UDA
structure into different tasks such as semantic segmentation
and change detection.
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